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We present a numerical study of the order-parameter probability density function �PDF� of the square Ising
model for lattices with linear sizes L=80–140. A recent efficient entropic sampling scheme, combining the
Wang-Landau and broad histogram methods and based on the high levels of the Wang-Landau process in
dominant energy subspaces is employed. We find that for large lattices there exists a stable window of the
scaled order-parameter in which the full ansatz including the pre-exponential factor for the tail regime of the
universal PDF is well obeyed. This window is used to estimate the equation of state exponent and to observe
the behavior of the universal constants implicit in the functional form of the universal PDF. The probability
densities are used to estimate the universal Privman-Fisher coefficient and to investigate whether one could
obtain reliable estimates of the universal constants controlling the asymptotic behavior of the tail regime.
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I. INTRODUCTION

A significant achievement in the theory of equilibrium
critical phenomena was the confirmation of universality and
scaling hypotheses and the calculation of critical exponents
�1–6�. The finite-size scaling technique has proven to be an
extremely reliable and powerful method for determining the
critical properties of low-dimensional systems, and several
review articles have appeared covering the original finite-
size scaling theory and later advancements �7–10�. In prac-
tice all universality claims have been put to several tests
using data obtained from numerical simulations of finite sys-
tems and the extraction of universal behavior from such stud-
ies remains today of vigorous research interest. Of particular
interest is the view that, a strong hallmark of a universality
class may be obtained via the probability density functions of
the main thermodynamic variables of the system at criticality
�11�. In finite systems the order-parameter may be character-
ized by a probability distribution function �PDF� and this
distribution may be scaled appropriately to provide a se-
quence of densities that appears to converge rapidly to a
unique scaling PDF �12–14�. We may think of this limiting
scaling function as the key ingredient specific to a universal-
ity class, like the critical exponents �15�. This idea has been
elaborated in recent years by many authors, several papers
are devoted to the estimation of such universal distributions,
and the subject is of great and growing interest
�11–13,15–23�.

Most properties of finite-size scaling functions are known
from numerical simulation of critical systems �12–24�. Ana-
lytical results originate from field theoretic renormalization
group calculations �25–27�, conformal field theory �1,28�,
but also from a generalized classification theory of phase
transitions �29–32�. In a few cases some of the analytical
predictions seem to have been confirmed by numerical simu-

lations �19,32�. A detailed investigation of the tail regime
was carried out in one of the early multicanonical Monte
Carlo simulations by Smith and Bruce �20� for the two-
dimensional Ising model, using square lattices of size L
=32 and L=64. Even though these authors managed to mea-
sure extremely small tail probabilities with high accuracy,
and found signs for the far tail regime conjecture, the theme
was not fully elucidated. It is well known that the process of
recording the very small probabilities in the tails of the dis-
tribution requires specialized numerical techniques and suf-
ficient statistical accumulation is necessary in order to probe
the tails confidently.

Some studies using traditional Monte Carlo simulations
have attempted to estimate the universal density over the last
years, but failed in establishing the true behavior at the far
tail regime of the critical order-parameter distribution. Tradi-
tional Monte Carlo sampling methods have increased dra-
matically our understanding of the behavior of the standard
classical statistical mechanics systems. The Metropolis
method and its variants were, for many years, the main tools
in condensed matter physics, particularly for the study of
critical phenomena �33–37�. However, this standard ap-
proach has certain crucial weaknesses. Importance sampling
is trapped for very long times in valleys of rough free energy
landscape, as in complex systems in which effective poten-
tials have a complicated rugged landscape. For large systems
these trapping effects become more pronounced and the Me-
tropolis method, but also its variants, become inefficient.
Moreover, importance sampling methods are unsuccessful in
recording of the very small probabilities in the tails of the
critical order-parameter distribution. As was pointed out by
Hilfer et al. �21� the study of the tail regime requires special
numerical techniques �19,20,38�.

Several new efficient methods that directly calculate the
density of states �DOS� of classical statistical models play a
dominant role in overcoming the above-mentioned problems
in recent years. A few remarkable examples of such methods
are the entropic �36,39�, multicanonical �40�, broad histo-
gram �BH� �41�, transition matrix �42� and Wang-Landau

*Author to whom correspondence should be addressed. Electronic
address: amalakis@phys.uoa.gr

PHYSICAL REVIEW E 73, 056114 �2006�

1539-3755/2006/73�5�/056114�9� ©2006 The American Physical Society056114-1

http://dx.doi.org/10.1103/PhysRevE.73.056114


�WL� �43� methods. It is now possible to study more effec-
tively the finite-size scaling properties of statistical models
by using entropic Monte Carlo techniques. The multicanoni-
cal Monte Carlo method has already been applied for the
evaluation of the tail regime of the universal PDF of the
order-parameter �21� and the present paper follows these at-
tempts by using a new simple and efficient entropic tech-
nique. This technique will be referred to as the critical mini-
mum energy subspace CrMES-WL entropic sampling
scheme �44� and is in fact a program for the simultaneous
estimation of all thermal and magnetic finite-size anomalies
of the statistical system. The method was recently presented
and successfully tested on the square Ising model �44�. The
central idea is to optimize the simulations by using in a sys-
tematic way only the dominant energy subspaces appropriate
to the finite system at the temperature range of interest. As
shown in Ref. �44� this restriction speeds up our simulations,
but also gives a new route for critical exponent estimation by
studying the finite-size scaling of the extensions of the domi-
nant subspaces. This scheme is expected to be much more
efficient than the Metropolis algorithm, as already pointed
out in a comparative study �44�, illustrating its superiority in
the recordings of the far tail regime. Overall, the aim of this
contribution is twofold: firstly to show that the CrMES
scheme is sufficient for the study of the tail regime and there-
fore to propose a sensible optimization route. Secondly, to
yield new evidence confirming the tail regime conjecture and
to provide an early estimation of the universal parameters
involved.

The rest of the paper is organized as follows: In the next
section, we briefly review the CrMES-WL entropic scheme,
including the N-fold way implementation of this scheme.
This approach is more efficient and makes available an ad-
ditional approximation for the DOS, based on the BH
method. In Sec. III we study the order-parameter distribution
of the square Ising model and we verify its asymptotic be-
havior in the far tail regime. The relevance of our findings to
the universal Privman-Fisher coefficient is also discussed
and used to observe the self-consistency of our estimations.
Our conclusions are summarized in Sec. IV.

II. ENTROPIC SAMPLING IN DOMINANT ENERGY
SUBSPACES

Let us briefly describe the Monte Carlo approach imple-
mented in order to generate the numerical data used in the
next section. Since the main ingredient of this approach, de-
cisive for its efficiency, is the restriction of the energy spec-
trum called CrMES restriction, we shall also explain, al-
though briefly, some key ideas about its implementation. For
a full description, alternative definitions and further technical
details of the CrMES scheme one should consult the original
papers, where the method has been recently tested �44–46�.
The main idea is to produce accurate estimates for all finite-
size thermal and magnetic anomalies of a statistical system
by using a DOS method, based on WL random walks, in an
appropriately restricted energy subspace �E1 ,E2�. In particu-
lar it was shown �44� that it is quite accurate to implement
this restricted scheme and at the same time accumulate data

for the two-parameter energy, magnetization �E ,M� histo-
grams, using for their recording only the high-levels of the
WL diffusion process. At the end of the process the final
accurate WL or the accumulated BH approximation of the
DOS and the cumulative �E ,M� histograms, are used to de-
termine all properties of the statistical system. This approxi-
mation is accurate in a wide temperature range, depending
on the extension of the dominant energy subspace used,
around the critical temperature of the system and this range
can be chosen in such a way that includes all pseudocritical
temperatures of the finite system.

A multirange WL algorithm �43� is implemented to obtain
the DOS and the �E ,M� histograms in the energy subspace
�E1 ,E2�. The WL modification factor �f j� is reduced at the
jth iteration according to: f1=e, f j→ f j−1

1/2 , j=2, . . . ,Jfin. The
density of states obtained throughout the WL iteration pro-
cess may be denoted by GWL�E�. This density and the high-
level �j�12, see also the discussion below� WL �E ,M� his-
tograms �denoted by HWL�E ,M�� are used to estimate the
magnetic properties in a temperature range, which is cov-
ered, by the restricted energy subspace �E1 ,E2�. The N-fold
version of the WL algorithm �47,48� makes available an ad-
ditional approximation for the DOS �denoted by GBH�E��,
based on the BH method. We shall use only the approxima-
tion of GBH�E� corresponding to the minimum energy tran-
sitions ��E=4� in the N-fold process. GBH�E� is obtained
from the well-known BH equation �41�: G�E��N�E ,E
+�E��E=G�E+�E��N�E+�E ,E��E+�E, where N�E ,E+�E�
is the number of possible spin flip moves from a microstate
of energy E to a microstate with energy E+�E. The micro-
canonical average of these numbers is estimated at the end of
the CrMES-WL entropic scheme, with the help of the corre-
sponding appropriate histograms recorded in the same high-
level WL iteration range, used also for the recording of the
�E ,M� histograms.

The probability density of the order-parameter at some
temperature of interest T may be expressed as follows: �44�

PT�M� �
�

E��E1,E2�
�HWL�E,M�/HWL�E��GWL�E�e−�E

�
E��E1,E2�

GWL�E�e−�E
,

�1a�

where

HWL�E� = �
M

HWL�E,M� �1b�

and the summation in M runs over all values generated in the
restricted energy subspace �E1 ,E2�. Since the detailed bal-
ance condition depends on the control parameter f j, it is sug-
gested �44� that only the high-level recipes or their N-fold
versions should be used for recording the �E ,M� histograms.
This practice yields excellent estimates for all magnetic
properties as has been shown in detail in Ref. �44�.

The performance limitations of entropic methods, such as
the WL random walk and the reduction of their statistical
fluctuations have recently attracted considerable interest
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�51–53�. For the CrMES entropic scheme, presented here in
Eq. �1�, an extensive comparative study using various imple-
mentations was presented in Ref. �44�. In particular, this
study has clarified the effect of the used range of the WL
iteration levels on the magnetic properties of the system and
also the effect of one of the simplest refinements of the WL
algorithm. Statistical fluctuations are reduced, as usually, by
multiple measurements but also by using the separation re-
finement proposed by Zhou and Bhatt �52�, in which the WL
DOS modification is applied after a number S �S=16� spin-
flips. For the recordings of the �E ,M� histograms, the range
j=12–24, of the WL iteration levels, was shown to give
accurate estimates for moderate lattice sizes �L=10–120�,
while a range of the order j=18–28 would be a more safe
choice for larger lattices. Furthermore, as it has been shown
recently �44,52,53�, the histogram flatness criterion of the
WL scheme for reducing the modification factor should be
treated with caution, and in order to avoid strong statistical
fluctuations in the final approximate DOS, enough statistics
should be obtained in each WL iteration.

Let us provide here some further technical details on the
implementation of our entropic scheme. For a large system,
we divide the total CrMES in several energy ranges of the
order of 50–60 energy levels each, overlapping at their ends
in at least 3 energy levels. When combining these energy
intervals, simple averaging is applied on the entropies of two
neighboring pieces at their overlapping end. Then, the DOS
for each piece is adjusted to the DOS of its previous neigh-
bor and continuing this procedure we finally obtain the DOS
in the total CrMES. We follow a mixed WL process in which
in the first stage �j=1–11 or j=1–17� we use the WL algo-
rithm and in the second stage �j=12–24 or j=18–28� its
N-fold version. This mixed process was also used in a pre-
vious study �48�, where a generalization of the N-fold ver-
sion was presented. In the present application only the origi-
nal Schulz et al. �47� N-fold version has been used �case c
=1 in Ref. �48��. The accumulation of the microcanonical
estimators, necessary for the application of the BH equation
�41�, takes place only in the N-fold stage of the process. At
these high levels of the WL random walk, the incomplete
detailed balanced condition has not a significant effect on the
BH microcanonical estimators and the particular multirange
approach seems to be optimal in both time and accuracy
requirements. Besides the worse time requirements, our tests
indicated also more significant effects �presumably coming
from incomplete detailed balanced condition� for a multi-
range approach using much larger energy intervals. Further-
more, an accurate run requires enough statistics to be ob-
tained during each step of the process.

The resulting WL and BH DOS approximations were
tested using our accurate finite-size data for the critical spe-
cific heat and the asymptotic formulas discussed in Refs.
�45,50�. Using several independent random walks, we have
verified that both the final WL and BH estimates for the
critical specific heats �C�Tc�� are very accurate, with errors
of less than 1%, even for large lattices of the order of L
=200. In many cases, the BH estimates showed smaller sta-
tistical fluctuations when different runs were compared.
However, in cases in which insufficient simulations were
performed for large lattices �L=140–200�, a significant un-

derestimation was observed for C�Tc� and this distortion was
then much stronger for the BH estimates. A further interest-
ing test, substantiating the statistical reliability of our ap-
proach, was performed for the lattice L=50 by using the
exact DOS obtained by the algorithm provided by Beale
�54�. In this test, we applied a one-range exact entropic
N-fold sampling to obtain an approximate BH DOS and this
was then used to obtain an estimate C�Tc�. When this one-
range exact entropic estimate of C�Tc� was compared with
the corresponding estimate obtained by our multirange and
approximate entropic scheme, we found excellent coinci-
dence and in effect the same order of relative errors �0.001–
0.0001� compared to the exact result. Similarly, such small
relative deviations, between the exact and the approximate
entropic schemes, were also observed in the corresponding
magnetic properties �for instance for 	�m2�� and in fact these
deviations were less significant than the fluctuations coming
from limited magnetic sampling, as observed in different
runs. Therefore, we suggest that the unified multi-range
implementation of the Wang-Landau �43� algorithm and the
BH method of Oliveira et al. �41� may be advantageous in
studies using entropic schemes.

In the original paper �45�, the CrMES method was pre-

sented by restricting the energy spectrum around the value Ẽ,
producing the maximum term in the partition function at
some temperature of interest. The restriction was imposed by
requesting a specified relative accuracy �r� on the value of
the specific heat. In other words, the restriction of the energy
spectrum produces an error on the value of the thermody-
namic parameter, at the particular temperature, and r mea-
sures the produced relative error. This relative error is set
equal to a small number �r=10−6�, which is, in any case,
much smaller than the statistical errors of the Monte Carlo
method �the DOS method� used for the determination of the
thermodynamic parameter �for instance the specific heat�. It
was also shown that a systematic study of the finite-size ex-
tensions of the resulting dominant subspaces produces the
thermal exponent � /� with very good accuracy �45�. As
pointed out above, this idea may be simultaneously applied
�44� for all finite-size anomalies including the magnetic
anomalies determined from the �E ,M� histograms. Further-
more, very good estimates of the critical exponent � /� have
been obtained �44� by studying the finite-size extensions of
analogous critical minimum magnetic subspaces �CrMMS�
defined also below. In this case, the restriction on the order-

parameter space around the value M̃ that maximizes the
order-parameter density at the critical temperature Tc is im-
posed on the probability density function, as shown in Eq.
�2�. That is, the location of the dominant magnetic subspaces

�M̃− ,M̃+� may be obtained by comparing the end-point den-
sities with the peak-height of the distribution

M̃±:
PTc

�M̃±�

PTc
�M̃�

� r �2�

and the critical exponent � /� may be estimated from the

following scaling law ��M̃ = �M̃+−M̃−�� �44�

UNIVERSAL FEATURES AND TAIL ANALYSIS OF THE¼ PHYSICAL REVIEW E 73, 056114 �2006�

056114-3



��M̃�Tc

2

Ld 
 L�/�. �3�

One should note here that, the finite-size extensions of the
above defined CrMMS can be calculated by any Monte Carlo
method producing the order-parameter distribution. One
could as well implement the Metropolis algorithm to find
estimates of the extensions involved in Eq. �3�. However,
this will yield a marked underestimation of � /� as a result of
the statistical insufficiency of this traditional algorithm in the
tail regime. This effect was shown to be a result of the very
slow equilibration process of the algorithm in the far tail
regime of the order-parameter distribution �44�. On the other
hand, the CrMES-WL entropic scheme was shown to pro-
duce very good estimates of the critical exponent � /� �44�
and this can be taken as an indication in favor of the suit-
ability of this method in studies of the universal distributions
and in particular for their tail regime.

Let us now address the question of adequacy of the
CrMES restriction to deal with the far tail regime of the
order parameter PDF. In previous Monte Carlo studies
�20,21� extensive simulations were undertaken in order to
reach, as close as possible, the saturation regime �M /N�1,
N=L2� of the order-parameter. This practice is related to the
fact that the part of the order-parameter spectrum determin-
ing the tail regime is not formally known. Scaling the PDF
introduces a variable x=m /	�m2� and the �right� tail regime
is expected to be detected in the range x�1 �13,20�. Conse-
quently, a main question concerns the sufficiency of the
CrMES scheme. Does such a restriction on the energy space
yield a reliable approximation in the tail regime? In particu-
lar, we would like to know whether this restriction would
allow us to simulate the order-parameter in the appropriate
range to confirm the tail regime conjecture. The following
observations provide strong evidence to this important ques-
tion and our findings in the next section establish explicitly
the fact that the implementation of a CrMES restriction per-
mits an asymptotic evaluation of properties related to the tail
regime.

In Fig. 1 we illustrate the effect of various restrictions on
the universal PDF �for details see next section� for a large
lattice size L=140. The simulation was carried out in a wide
energy range �R1 in Fig. 1� including the CrMES at the exact
critical temperature �R2 in Fig. 1�. Specifically, counting the
energy levels from the ground state with an integer variable
ie�=1,2 ,3 , . . . �, where ie=1 corresponds to the ground state
and the energy of a level is E=−2N+4· �ie−1�, the simula-
tion was carried in the wide subspace R1: ie=1950–3800.
The CrMES restriction applied to produce a relative accu-
racy �r=10−6� on the critical specific heat �see the original
paper on CrMES �45�� yields the subspace R2: ie
=2228–3514, while the restriction defined in Eq. �2� gives
the subspace ie=2246–3491, which by definition determines
the extent we probe the tail of the order-parameter distribu-
tion. We note that this later subspace is included in the
CrMES determined from the specific heat condition �using
the same level of accuracy r� and that this is a general prop-
erty which does not seem to depend on the lattice size, or
even on the model as far as we had the opportunity to ob-

serve. This explains the striking observation from Fig. 1 that
the PDF’s obtained from the subspaces R1 and R2 completely
coincide in the x range common in both subspaces. The dif-
ference between the two curves is always smaller than the
accuracy level r and, as one can observe more clearly from
the inset, the part of the R1-PDF not accessible by using the
R2 �CrMES� subspace is the range: x=1.47–1.59. However,
the R1-PDF appears to be already flat in this range x
=1.47–1.59 and fitting attempts will be unstable, producing
large errors. Thus the saturation range is sensibly excluded
from our simulations by the CrMES restriction. The third
curve, denoted as R3 in Fig. 1 corresponds to a PDF obtained
in the subspace R3: ie=2620–3800, restricted severely from
the saturation side. This curve is presented in order to ob-
serve that errors will be introduced if a restriction on the
energy space is inappropriately applied. Noting that the er-
rors in determining the end-points of the CrMES are of the
order of 2–10 energy levels �at these lattice sizes� we con-
clude that critical minimum energy subspaces, with a reason-
able accuracy level of the order r=10−4–10−6, will be suffi-
cient for the study of the tail regime.

III. UNIVERSAL FEATURES AND THE TAIL REGIME OF
THE ORDER-PARAMETER DISTRIBUTION

The universal scaling distribution of the order-parameter
may be obtained from the magnetization distributions pm�m�,
constructed with the help of the numerical scheme outlined
in the previous section, as follows �20�:

p�x�dx � pm�m�dm, x = m/	�m2�, m = M/N . �4�

Figure 2 shows these distributions for lattice sizes L=60 and
L=120. The data used were generated by the CrMES-WL
�N-fold:14–24� entropic scheme using a separation refine-

FIG. 1. Universal PDF’s for a lattice of linear size L=140, with
a logarithmic scale on the vertical axis. Three different subspaces
R1, R2, and R3 are used to obtain the corresponding curves. The
wider subspace R1 �ie=1950–3800� yields the PDF shown by the
solid line. The dots demonstrate the PDF corresponding to the sub-
space R2 �ie=2228–3514� and as can be seen from the inset the two
cases coincide in their common part. R2 is the CrMES defined by
the specific heat’s accuracy condition, as discussed in the text. Fi-
nally, the dashed curve, R3 case �ie=2620–3800�, illustrates that
errors will be introduced by an inappropriate restriction of the en-
ergy space.
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ment S=16, as explained in the previous section. The curves
shown in this figure illustrate the densities obtained only via
the BH approximation for the DOS and not the correspond-
ing WL approximation of Eq. �1�. This practice will be
followed below in all our figures, except for the cases, indi-
cated in the figures, where both the WL and BH DOS are
used to construct and illustrate the corresponding approxima-
tions for the probability densities. Let us point out that the
curves shown are lines that pass through all the points rep-
resenting the sampled values of the order parameter. For a
large lattice, there will be several thousands of such points,
since each of them corresponds to a possible value of m
�=M /N, M =0,2 ,4 , . . . ,N� of the finite system. The density
of points on the x axis �m axis� grows with the lattice size,
and we should expect to having N /2=L2 /2 points in the
positive x axis �m axis�, provided that all energies and all
corresponding order-parameter values were sampled by the
WL process. However, as discussed in Sec. II, the points
corresponding to the saturation regime are not sampled, since
this regime is excluded by the CrMES restriction applied on
the energy spectrum. In order to illustrate the density func-
tions in Fig. 2 we have chosen to identify their peak heights
to the same value, set in Fig. 2 equal to unity �p̂�x*�=1,
where x* the most probable value�. This is equivalent to mul-
tiplying the universal PDF by a factor, which could in prin-
ciple be weakly L-dependent and this dependence will be
discussed further below.

Let us now consider the main conjecture for the large-x
behavior of the universal function p�x�, �19,20�

p�x� � p	x
 exp�− a	x�+1� , �5a�

with


 =
� − 1

2
�5b�

and p	, a	 universal constants. The structure of the exponen-
tial �5a� has been suggested by rigorous results for the two-
dimensional Ising model �49� and is also consistent with
Monte Carlo studies of the Ising universality class �13�. The
studies of Refs. �19,20� have provided some evidence for this
conjecture and in particular for the prefactor and the relation

of the exponent 
 to the critical exponent �. For the 2D Ising
model the exponent should have the value 
=7, if, of course,
the prefactor hypothesis is valid. Smith and Bruce �20� pro-
vided numerical support for this value, but their study was
not completely conclusive since it was carried out only for
relatively small lattices �L=32 and L=64� and the x window
in which the value 
=7 was observed was actually quite
narrow. We now present results for several lattice sizes �L
=80, 100, 120, and 140� reinforcing this conjecture in a very
wide x window. Following Smith and Bruce �20� we fix the
exponent � in the exponential factor of Eq. �5� and fit our
results �x�1� in x windows, each one corresponding to 50
different magnetization values, sampled during the WL
�N-fold:12–24� process. Figure 3 shows a very clear signa-
ture of the prefactor law �5b� which upholds in a large x
window only for the large lattices �L=120 and L=140 are
shown�. On the other hand, for smaller lattice sizes L�80
�L=80 is shown� the picture is similar to that presented in
Ref. �20� and the expected value is obtained only in a small
x window. In Fig. 3 we have illustrated the behavior of the
estimates for the exponent 
, and for the large lattices �L
=120 and L=140� both the WL and BH cases are shown.
From this figure we observe that the window x=1.2–1.3 is
very stable for the sizes L=120 and L=140, and the esti-
mates for the exponent 
 remain close to the value 
=7,
beyond small fluctuations, for even larger values of x. It
appears that this stable x window may be very convenient for
further fitting attempts.

Encouraged from the above finding, we now use this
stable x window to perform further fitting attempts, allowing
this time both exponents in the exponential and in the pref-
actor term vary, and use 
 as a free parameter by assuming
the validity of Eq. �5b�. In this way we examine whether the
particular x window provides a good independent estimation
of the exponent �, based on the full tail regime conjecture
�Eq. �5��. In other words, 
, a	 and p	 are the three free
fitting parameters in applying Eq. �5� to our numerical data.
Figure 4 depicts the three-parameter fitting attempts for L
=100 and L=120 using both WL and BH approximations of
the universal PDF. The values of the estimates for the expo-
nent 
 and their fitting errors are illustrated in this figure.
The estimates obtained for the exponent 
 are quite good in

FIG. 2. Illustration of the universal scaling function p�x� for L
=60 and L=120. The inset is an enlargement of the right tails for
the case L=120 and L=140. Note that the peak heights have been
set equal to 1. In both cases a logarithmic scale on the vertical axis
has been taken.

FIG. 3. Behavior of estimates of the exponent 
 /7 for lattice
sizes L=80, 120, and 140, for both the WL and BH methods used.
The window x=1.2–1.3 appears to be very stable for the sizes L
=120 and L=140, where the estimates for the exponent 
 remain
close to the value 
=7.
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all cases and their average 
̄=7.041 is accurate to two sig-
nificant figures, which is a rather pleasing result.

It is interesting to examine whether one could obtain re-
liable estimates of the universal constants a	 and p	 using
the above window and to see whether such estimates can be
tested against known results in the literature. It appears that
the idea of such a test has not been tried in previous studies.
In contrast, the main conclusion of the recent paper of Hilfer
et al. �21� is that “the universal scaling function for the
order-parameter distribution cannot be considered to be
known from numerical simulations at present.” Furthermore,
it was stated in the conclusion of this paper that “even for the
square Ising model a numerical estimation of the universal
PDF requires sizes that are beyond present day computer
recourses.” Therefore, one would be tempted to think that,
also the universal constants a	 and p	 will approach their
values slowly in the asymptotic limit. Thus, a reliability test
for the values of a	 and p	 estimated in the above x window
will be useful even in the case where it fails. On the other
hand, a test yielding a good comparison will be a strong
verification of the proposal that the observed stable x win-
dow can be used for the extraction of the asymptotic behav-
ior of the tail regime of the universal scaling function.

In order to construct a reliability test as discussed above,
we shall now define following Bruce �15� the universal func-
tion F�y�

F�y� = ln� dxp�x�eyx� . �6�

The limiting behavior of the function F�y� is controlled by
the large-x behavior of p�x� and as shown by Bruce �15� one
can find, by assuming the validity of the full ansatz �5�, a
large y-expansion of F�y� which reads as

F�y� � b	y1+1/� +
1

2
ln� 2p	

2

a	��� + 1�� , �7�

where b	 is a constant. The constant term in Eq. �7� is the
universal Privman-Fisher coefficient �15�. Its value for the
2D square Ising model is Uo=−0.639 912 �15,50�, and as
shown in Ref. �15� is related via the ansatz �5� to the univer-
sal constants a	 and p	 as follows:

Uo =
1

2
ln� 2p	

2

a	��� + 1�� . �8�

The expansion �7� above has been fully illustrated by Bruce
�15�, using appropriate y windows to observe the develop-
ment of the effective Uo �Uo

eff� in the large y range. The
agreement of this development towards the universal
Privman-Fisher coefficient was shown to be excellent �see
Fig. 1 in Ref. �15��.

In Fig. 5 we reproduce Fig. 1 of Ref. �15�, using our
numerical data for sizes L=80 and L=120. The approach to
the universal value Uo is again excellent and the L=120 data
produce a slightly faster approach, as can be seen from this
figure. The estimates of Uo

eff in the range of ym�5 deviate
from the exact value by less than 0.2%. This is an explicit
confirmation that a CrMES restriction is adequate for �nu-
merical� studies of the tail regime. As pointed out by Bruce
�15�, the numerical estimation of Uo via the numerical inte-
gration �see Eq. �6��, illustrated above, is more reliable than
attempting a direct Monte Carlo determination of free ener-
gies �15,17� or attempting to estimate Uo via the factors ap-
pearing in Eq. �8�. In accordance with our earlier discussion,
an accurate estimation of the universal constants a	 and p	

would not be normally expected at these lattice sizes and
corrections to scaling may complicate the situation.

We proceed to describe an estimation procedure for the
universal constants a	 and p	, based on the stable window
x=1.2–1.3. As can be seen from the fitting attempts in Fig.
4, the estimates for the critical exponent 
 suffer from sta-
tistical fluctuations and are sensitive to both the DOS statis-

FIG. 4. Illustration of the three-parameter fitting attempts for
L=100 and L=120 using both WL and BH approximations of the
universal PDF. The values of the estimates for the exponent 
 and
their fitting errors manifest the accuracy of our results and also the
stability of the fitting attempts at the window x=1.2–1.3. The small
differences of the exponent estimates from the two different DOS’s,
within the same entropic sampling runs, reflect the sensitivity of the
fitting attempts to statistical errors, growing with the lattice size.

FIG. 5. Variation of Uo
eff, for lattices L=80 and L=120, obtained

as intercepts of linear fittings of Eq. �7� in small windows in the
variable y1+1/�. The ym values correspond to the center of the fitting
windows. The inset shows the linear fit according to Eq. �7� in the
large y part �L=120�. The dashed line marks the exact value of the
amplitude Uo for the 2D Ising model �50�, approached by the cor-
responding intercepts. This figure should be compared to Fig. 1 of
Ref. �15�.
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tical method �WL or BH� and to the lattice size. It is there-
fore very important to repeat the statistical sampling and to
use several lattice sizes in order to be able to observe sys-
tematic dependencies that may effect the estimated values. A
fully converged implementation of the WL algorithm will be
essential for the accurate application of the scheme and, of
course, as usually repeated applications should improve the
scheme.

Thus, we have applied a well-saturated �see the discussion
in Sec. II� CRMES-WL�N-fold:16–30� entropic scheme us-
ing a separation refinement S=8 for the N-fold levels j
=16–26 and a separation refinement S=16 for the N-fold
levels j=27–30. In each run we used four such WL random
walks to estimate the average WL DOS and to obtain the
corresponding BH DOS. At the end of the run the cumulative
HWL�E ,M� histograms were used with the above DOSs to
obtain the corresponding universal PDF’s. This process was
repeated 4 times for each of the lattices sizes L=90, 100,
110, 120, and 140. For each lattice size, and each of the
above runs �consisting of the 4 WL random walks� we fitted
the function �5a� in the stable window x=1.2–1.3 by fixing
the value of the exponent 
 to the expected value 
=7.
Thus, for each lattice size we obtained mean values and sta-
tistical errors for the following parameters: the universal con-
stant a	 and p̂	, where p̂	 absorbs the identification of all
peak heights to 1. The multiplying factor, thus absorbed in
our notation by using p̂	, is the peak height p�x*� �p	

= p̂	 · p�x*��. The peak height was also estimated for each run
separately as well as the parameter �=L−1/8 /	�m2� which
connects the universal PDF in the scaling variable x
=m /	�m2� �15� with the universal PDF in the scaling vari-
able z=mL1/8 used by Hilfer et al. �19� �z=�−1x�. Our fitting
attempts were also repeated in this z representation using the
equivalent stable window which has been taken to be z
=1.26–1.36. For the parameters in this z representation the
following notation was used: pz,	 and az,	 for the universal
constants controlling the tail regime, and pz�x*� for the peak
height.

Using the above described fitting attempts we observed no
systematic L dependency, in the range L=90–140. This ob-
servation concerns all the estimated parameters, and it ap-
pears that not even weak L corrections should be applied. In
fact the picture, obtained for each parameter, resembles ef-
fectively a statistical fluctuation around a mean value. There-
fore it seems sensible to average the values of all parameters
over the range L=90–140 �assuming no systematic L depen-

dency� and take as respective errors three standard deviations
of the averaging process. The values of all parameters ob-
tained from this hypothesis are collected in Table I and are
presented for the methods corresponding to the WL DOS
�WL� and the BH DOS �BH�. Both x and z representations
were used in the fittings and the average for � is also given in
the footnote of Table I. Using these values in conjunction
with Eq. �8� and the exact value for the state exponent
�=15 �note also that p	= p̂	 · p�x*��, the respective estimate
for the universal Privman-Fisher coefficient is determined for
each case and is presented in Table I.

Discussing Table I we first observe that all parameters
involved in the estimation of the universal Privman-Fisher
coefficient have reasonable relative errors of the order of
2%–4%. The corresponding relative errors for Uo are of the
order of 4%–10%. However, the values obtained for Uo are
lower than the exact value and the underestimation is of the
order of 7%. This, compared to the excellent agreement ob-
tained by the numerical integration method shown in Fig. 5
and discussed above reveals the superiority of the integration
method. The origin of the present underestimation is not
clear. One may think that, moving to a x window correspond-
ing to larger values of x could improve the above picture.
Nevertheless, we have checked that this is not so, and that
statistical errors become dominant as we move to larger x
values, making the estimation scheme unreliable. Finally, let
us compare the constant az,	=0.026. . . of Table I with the
coefficient of the exponential term given in Eq. 7 of Ref.
�19�. This latter coefficient has the value 1

�
� �

�+1
��+1

=0.023738. . . for the square Ising model. These two values
are of the same order, although corresponding to different
scaling limits �19�, and this is an indication in favor of the
reliability of the stable x window discussed here. It also
strongly supports the proposal of Hilfer and Wilding �19� to
calculate critical finite-size scaling functions via the general-
ized classification theory of phase transitions developed by
Hilfer �29–32�. It will be interesting to uncover the reasons
behind the minor underestimation of the universal Privman-
Fisher coefficient by the direct estimation of the universal
constants a	 and p	, as attempted in this work.

Finally, we briefly discuss the behavior of the left tails of
the critical distributions. This behavior has been considered
by Hilfer et al. �21� by using rescaled probability densities
po�x�, where x and po are defined in such a way that yield
mean zero, unit norm, and unit variance �21�. This new
scaled variable x should not be confused with the scaled
variable x defined in Eq. �4� and appearing in Figs. 1–4.

TABLE I. Estimates for the universal parameters and the Privman-Fisher coefficient.

Methoda Uo

p̂	 p�x*� p	 a	

WL 0.6258�240� 1.309�51� 0.8190�449� 0.0571�32� −0.589�63�
BH 0.6172�110� 1.303�30� 0.8042�234� 0.0561�20� −0.599�34�

p̂z,	 pz�x*� pz,	 az,	

WL 0.4476�269� 1.252�52� 0.5604�156� 0.0266�9� −0.589�33�
BH 0.4462�132� 1.246�30� 0.5560�213� 0.0268�5� −0.599�40�

aWL: �=0.951�11�, BH: �=0.953�5�.
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These new distributions are appropriately translated with re-
spect to the position of the peak of the distribution �xpeak� for
each tail separately. For instance for the left tail one defines:
pol�x�= po�xpeak−x� with x�xpeak. Furthermore, these authors

used plots of the functions q�y�=
d log�−log pol�

d log x versus y=log x,
and compared their tail behavior with the standard Gaussian
behavior. The large x range of these plots is convenient for
illustrating the possible developments of fat stretched expo-
nential tails of the form �exp�−x��. Using their method we
have also tried to clarify the behavior of the left tails of our
critical distributions for all sizes up to L=140. Qualitatively,
we found the same behavior with that of Ref. �21�. In par-
ticular a data collapse for all sizes up to L=140 was observed
and the picture is very similar with their behavior �see the
right upper row of Fig. 6 in Ref. �21��. However, it should be
noted that, the data corresponding to the left tails suffer from
relatively stronger fluctuations when compared with the data
of the right tails. This is due to the inevitable more limited
magnetic sampling in the left tails. Note that, the left tails are
strongly influenced from a part of the energy spectrum in
which a much larger number of spin configurations exists,
compared with the lower energy part of the spectrum deter-
mining the right tails. However, using relatively larger x win-
dows �corresponding to at least 250 different magnetization
values for L=120� we have tried to repeat the small x win-
dows fitting attempts, as those shown in our Fig. 3. In this
case we used as a test function the simple exponential be-
havior pol�x�=q exp�−bx��, and the total fitting range of the
new scaled variable x was x=1–3.25, which we assume de-
scribes the left tail regime. Note that this range corresponds
to the range x=0.87–0.28 of our Fig. 2 for the scaled vari-
able defined in Eq. �4�. For the lattice L=120 the total fitting
range includes about 2400 different magnetization values.
Remarkably, we have obtained almost the same behavior for
L=50 and L=120. For both sizes we found that for the above
rather large range �1–3.25� the exponent � steadily decreases
�almost linearly for L=120� from the value �=0.75 to the
value 0.15 passing through the value �=0.5 in the neighbor-
hood of x=1.75. For larger values of x outside the above

range �1–3.25� the statistical fluctuations do not permit rea-
sonable fits. The described behavior is consistent with that of
Ref. �21� and since it is observed for the small and the larger
lattice sizes we may suppose that it represents also the true
asymptotic behavior. As a final remark we point out that the
fat stretched exponential left tail �exp�−	x� reported in Ref.
�21� at the low temperature T=1.5 can not be studied by our
data. Such a study would require the application of the
present scheme in a lower part of the energy space.

IV. CONCLUSIONS

In the present Monte Carlo study we applied the
CrMES-WL entropic sampling scheme, based on the high-
levels of the Wang-Landau process in dominant energy sub-
spaces, in order to obtain the order-parameter universal PDF
of the square Ising model for large lattices. The efficiency of
this method enabled us to clarify the asymptotic tail behavior
of the universal distribution and to obtain reliable data for
the universal parameters. In particular, we found that there
exists a large stable window of the scaled order parameter in
which the full ansatz for the tail regime is well obeyed. In a
second stage, this window was used to estimate the equation
of state exponent � and also to observe the behavior of the
universal constants implicit in the functional form of the uni-
versal PDF and to approximate for the first time their values.
The estimates of the universal constants appear to be reliable
to within 3%–7% of statistical errors. The excellent accuracy
obtained for the universal Privman-Fisher coefficient, by
appropriate numerical integration, was also illustrated and
consists a concrete reliability test of the accuracy of our nu-
merical scheme.
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